Что такое динамическое давление

Основой проектирования любых инженерных сетей является расчет. Для того чтобы правильно сконструировать сеть приточных или вытяжных воздуховодов, необходимо знать параметры воздушного потока. В частности, требуется рассчитать скорость потока и потери давления в канале для правильного подбора мощности вентилятора.

Схема устройства и принципа работы воздуховода.

В этом расчете немаловажную роль играет такой параметр, как динамическое давление на стенки воздуховода.

Поведение среды внутри воздухопровода

Вентилятор, создающий воздушный поток в приточном или вытяжном воздуховоде, сообщает этому потоку потенциальную энергию. В процессе движения в ограниченном пространстве трубы потенциальная энергия воздуха частично переходит в кинетическую. Этот процесс происходит в результате воздействия потока на стенки канала и называется динамическим давлением.

Формулы для аэродинамического расчета систем естественной вентиляции.

Кроме него существует и статическое давление, это воздействие молекул воздуха друг на друга в потоке, оно отражает его потенциальную энергию. Кинетическую энергию потока отражает показатель динамического воздействия, именно поэтому данный параметр участвует в расчетах аэродинамики вентиляции.

При постоянном расходе воздуха сумма этих двух параметров постоянна и называется полным давлением. Оно может выражаться в абсолютных и относительных единицах. Точкой отсчета для абсолютного давления является полный вакуум, в то время как относительное считается начиная от атмосферного, то есть разница между ними — 1 Атм. Как правило, при расчете всех трубопроводов используется величина относительного (избыточного) воздействия.

Физический смысл параметра

Таблица расчета вентиляции.

Если рассмотреть прямые отрезки воздуховодов, сечения которых уменьшаются при постоянном расходе воздуха, то будет наблюдаться увеличение скорости потока. При этом динамическое давление в воздуховодах будет расти, а статическое — снижаться, величина полного воздействия останется неизменной. Соответственно, для прохождения потока через такое сужение (конфузор) ему следует изначально сообщить необходимое количество энергии, в противном случае может уменьшиться расход, что недопустимо. Рассчитав величину динамического воздействия, можно узнать количество потерь в этом конфузоре и правильно подобрать мощность вентиляционной установки.

Обратный процесс произойдет в случае увеличения сечения канала при постоянном расходе (диффузор). Скорость и динамическое воздействие начнут уменьшаться, кинетическая энергия потока перейдет в потенциальную. Если напор, развиваемый вентилятором, слишком велик, расход на участке и во всей системе может вырасти.

В зависимости от сложности схемы, вентиляционные системы имеют множество поворотов, тройников, сужений, клапанов и прочих элементов, называемых местными сопротивлениями. Динамическое воздействие в этих элементах возрастает в зависимости от угла атаки потока на внутреннюю стенку трубы. Некоторые детали систем вызывают значительное увеличение этого параметра, например, противопожарные клапаны, в которых на пути потока установлены одна или несколько заслонок. Это создает повышенное сопротивление потоку на участке, которое необходимо учитывать в расчете. Поэтому во всех вышеперечисленных случаях нужно знать величину динамического давления в канале.

Расчеты параметра по формулам

На прямом участке скорость движения воздуха в воздуховоде неизменна, постоянной остается и величина динамического воздействия. Последняя рассчитывается по формуле:

Схема организации воздухообмена при общеобменной вентиляции.

  • Рд — динамическое давление в кгс/м2;
  • V — скорость движения воздуха в м/с;
  • γ — удельная масса воздуха на этом участке, кг/м3;
  • g — ускорение силы тяжести, равное 9.81 м/с2.

Получить значение динамического давления можно и в других единицах, в Паскалях. Для этого существует другая разновидность этой формулы:

Здесь ρ — плотность воздуха, кг/м3. Поскольку в вентиляционных системах нет условий для сжатия воздушной среды до такой степени, чтобы изменилась ее плотность, она принимается постоянной — 1.2 кг/м3.

Читайте также:  Звукоизолирующие прокладки для пола

Далее, следует рассмотреть, как участвует величина динамического воздействия в расчете каналов. Смысл этого расчета — определить потери во всей системе приточной либо вытяжной вентиляции для подбора напора вентилятора, его конструкции и мощности двигателя. Расчет потерь происходит в два этапа: сначала определяются потери на трение о стенки канала, потом высчитывается падение мощности воздушного потока в местных сопротивлениях. Параметр динамического давления участвует в расчете на обоих этапах.

Сопротивление трению на 1 м круглого канала рассчитывается по формуле:

  • Рд — динамическое давление в кгс/м2 или Па;
  • λ — коэффициент сопротивления трению;
  • d — диаметр воздуховода в метрах.

Нюансы монтажа воздуховода.

Потери на трение определяются отдельно для каждого участка с различными диаметрами и расходами. Полученное значение R умножают на общую длину каналов расчетного диаметра, прибавляют потери на местных сопротивлениях и получают общее значение для всей системы:

  1. HB (кгс/м2) — общие потери в вентиляционной системе.
  2. R — потери на трение на 1 м канала круглого сечения.
  3. l (м) — длина участка.
  4. Z (кгс/м2) — потери в местных сопротивлениях (отводах, крестовинах, клапанах и так далее).

Определение параметров местных сопротивлений вентиляционной системы

В определении параметра Z также принимает участие величина динамического воздействия. Разница с прямым участком заключается в том, что в разных элементах системы поток меняет свое направление, разветвляется, сходится. При этом среда взаимодействует с внутренними стенками канала не по касательной, а под разными углами. Чтобы это учесть, в расчетную формулу можно ввести тригонометрическую функцию, но тут есть масса сложностей. Например, при прохождении простого отвода 90⁰ воздух поворачивает и нажимает на внутреннюю стенку как минимум под тремя разными углами (зависит от конструкции отвода). В системе воздуховодов присутствует масса более сложных элементов, как рассчитать потери в них? Для этого существует формула:

Для того чтобы упростить процесс расчета, в формулу введен безразмерный коэффициент местного сопротивления. Для каждого элемента вентиляционной системы он разный и является справочной величиной. Значения коэффициентов были получены расчетами либо опытным путем. Многие заводы-производители, выпускающие вентиляционное оборудование, проводят собственные аэродинамические исследования и расчеты изделий. Их результаты, в том числе и коэффициент местного сопротивления элемента (например, противопожарного клапана), вносят в паспорт изделия или размещают в технической документации на своем сайте.

Для упрощения процесса вычисления потерь вентиляционных воздуховодов все значения динамического воздействия для разных скоростей также просчитаны и сведены в таблицы, из которых их можно просто выбирать и вставлять в формулы. В Таблице 1 приведены некоторые значения при самых применяемых на практике скоростях движения воздуха в воздуховодах.

Скорость воздуха, м/с 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Динамическое давление кгс/м 2 0.0152 0.0611 0.1374 0.2444 0.3817 0.5499 0.7483 0.9776 1.237
Скорость воздуха, м/с 5 5.5 6 6.5 7 7.5 8 8.5 9
Динамическое давление кгс/м 2 1.527 1.8486 2.199 2.581 2.9939 3.4373 3.9104 4.4149 4.9491

Из расчетных формул и данной таблицы хорошо видно, что значения не растут пропорционально возрастанию скорости воздуха.

Динамическое воздействие, оказываемое потоком воздуха на стенки воздуховодов, фасонных и прочих элементов, определяет потери давления на участке и является важным параметром, который необходимо учитывать в расчетах.

ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ г. СЕМЕЙ

Методическое пособие по теме:

Исследование реологических свойств биологических жидкостей.

Методы исследования кровообращения.

Основные вопросы темы:

  1. Уравнение Бернулли. Статическое и динамическое давления.
  2. Реологические свойства крови. Вязкость.
  3. Формула Ньютона.
  4. Число Рейнольдса.
  5. Ньютоновская и Неньютоновская жидкость
  6. Ламинарное течение.
  7. Турбулентное течение.
  8. Определение вязкости крови с помощью медицинского вискозиметра.
  9. Закон Пуазейля.
  10. Определение скорости кровотока.
  11. Полное сопротивление тканей организма. Физические основы реографии. Реоэнцефалография
  12. Физические основы баллистокардиографии.
Читайте также:  Конвектор для обогрева дома

Уравнение Бернулли. Статическое и динамическое давления.

Идеальной называется несжимаемая и не имеющая внутреннего трения, или вязкости; стационарным или установившимся называется течение, при котором скорости частиц жидкости в каждой точке потока со временем не изменяются. Установившееся течение характеризуют линиями тока — воображаемыми линиями, совпадающими с траекториями частиц. Часть потока жидкости, ограниченная со всех сторон линиями тока, образует трубку тока или струю. Выделим трубку тока настолько узкую, что скорости частиц V в любом ее сечении S, перпендикулярном оси трубки, можно считать одинаковыми по всему сечению. Тогда объем жидкости, протекающий через любое сечение трубки в единицу времени остается постоянным, так как движение частиц в жидкости происходит только вдоль оси трубки: . Это соотношение назы­вается условием неразрывности струи. Отсюда следует, что и для реальной жидкости при установившемся течении по трубе переменного сечения количество Qжидкости, проте­кающее в единицу времени через любое сечение трубы, остается по­стоянным (Q = const) и средние скорости течения в различных сече­ниях трубы обратно пропорциональны площадям этих сечений: и т . д.

Выделим в потоке идеальной жидкости трубку тока, а в ней — достаточно малый объем жидкости массой , который при тече­нии жидкости перемещается из положения А в положение В.

Из-за малости объема можно считать, что все частицы жидкости в нем находятся в равных условиях: в положе­нии А имеют давление скорость и находятся на высоте h1от нуле­вого уровня; в положении В — соот­ветственно . Сечения трубки тока соответственно S1 и S2.

Жидкость, находящаяся под дав­лением, обладает внутренней потен­циальной энергией (энергией давле­ния), за счет которой она может совершать работу. Этаэнергия Wp измеряется произведением давления на объем V жидкости: . В данном случае перемещение массы жидкости происходит под действием разности сил давления в се­чениях Si и S2. Совершаемая при этом работа Ар равняется разности по­тенциальных энергий давления в точках . Эта работа расходуется на работу по преодолению действия силы тяжес­ти и на изменение кинетической энергии массы

жидкости:

Перегруппировав члены уравнения, получим

Положения А и В выбраны произвольно, поэтому можно утверждать, что в любом месте вдоль трубки тока сохраняется условие

разделив это уравнение на , получим

где плотность жидкости.

Это и есть уравнение Бернулли. Все члены уравнения, как легко убедиться, имеют размерность давления и называются: статистическим: гидростатическим: — динамическим. Тогда уравнение Бернулли можно сформулировать так:

при стационарном течении идеальной жидкости полное давление равное сумме статического, гидростатического и динамического давлений, остается величиной постоянной в любом поперечном сечении потока.

Для горизонтальной трубки тока гидростатическое давление ос­тается постоянным и может быть отнесено в правую часть уравнения, которое при этом принимает вид

статистическое давление обусловливает потенциальную энергию жидкос­ти (энергию давления), динамическое давление — кинетическую.

Из этого уравнения следует вывод, называемый правилом Бернулли:

статическое давление невязкой жидкости при течении по горизон­тальной трубе возрастает там, где скорость ее уменьшается, и на­оборот.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9079 — | 7217 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Лекция 2. Потери давления в воздуховодах

План лекции. Массовый и объемный потоки воздуха. Закон Бернулли. Потери давления в горизонтальном и вертикальном воздуховодах: коэффициент гидравлического сопротивления, динамический коэффициент, число Рейнольдса. Потери давления в отводах, местных сопротивлениях, на разгон пылевоздушной смеси. Потери давления в высоконапорной сети. Мощность пневмотранспортной системы.

Читайте также:  Будка для собаки с верандой
2. Пневматические параметры течения воздуха
2.1. Параметры воздушного потока

Под действием вентилятора в трубопроводе создается воздушный поток. Важными параметрами воздушного потока являются его скорость, давление, плотность, массовый и объемный расходы воздуха. Расходы воздуха объемный Q , м 3 /с, и массовый М , кг/с, связаны между собой следующим образом:

; , (3)

где F – площадь поперечного сечения трубы, м 2 ;

v – скорость воздушного потока в заданном сечении, м/с;

ρ – плотность воздуха, кг/м 3 .

Давление в воздушном потоке различают статическое, динамическое и полное.

Статическим давлением Р ст принято называть давление частиц движущегося воздуха друг на друга и на стенки трубопровода. Статическое давление отражает потенциальную энергию воздушного потока в том сечении трубы, в котором оно измерено.

Динамическое давление воздушного потока Р дин , Па, характеризует его кинетическую энергию в сечении трубы, где оно измерено:

.

Полное давление воздушного потока определяет всю его энергию и равно сумме статического и динамического давлений, измеренных в одном и том же сечении трубы, Па:

Отсчет давлений можно вести либо от абсолютного вакуума, либо относительно атмосферного давления. Если давление отсчитывается от нуля (абсолютного вакуума), то оно называется абсолютным Р . Если давление измерять относительно давления атмосферы, то это будет относительное давление Н .

Атмосферное давление равно разности полных давлений абсолютного и относительного

Давление воздуха измеряют Па (Н/м 2 ), мм водяного столба или мм ртутного столба:

1 мм вод. ст. = 9,81 Па; 1 мм рт. ст. = 133,322 Па. Нормальное состояние атмосферного воздуха соответствует следующим условиям: давление 101325 Па (760 мм рт. ст.) и температура 273К.

Плотность воздуха есть масса единицы объема воздуха. По уравнению Клайперона плотность чистого воздуха при температуре 20ºС

кг/м 3 .

где R – газовая постоянная, равная для воздуха 286,7 Дж/(кг  К); T – температура по шкале Кельвина.

Уравнение Бернулли. По условию неразрывности воздушного потока расход воздуха постоянен для любого сечения трубы. Для сечений 1, 2 и 3 (рис. 6) это условие можно записать так:

;

. (4)

При изменении давления воздуха в пределах до 5000 Па плотность его остается практически постоянной. В связи с этим

;

Изменение давления воздушного потока по длине трубы подчиняется закону Бернулли. Для сечений 1, 2 можно написать

(5)

где  р 1,2 – потери давления, вызванные сопротивлением потока о стенки трубы на участке между сечениями 1 и 2, Па.

С уменьшением площади поперечного сечения 2 трубы скорость воздуха в этом сечении увеличится, так что объемный расход останется неизменным. Но с увеличением v 2 возрастет динамическое давление потока. Для того, чтобы равенство (5) выполнялось, статическое давление должно упасть ровно на столько, на сколько увеличится динамическое давление.

При увеличении площади сечения динамическое давление в сечении упадет, а статическое ровно на столько же увеличится. Полное же давление в сечении останется величиной неизменной.

2.2. Потери давления в горизонтальном воздуховоде

Потеря давления на трение пылевоздушного потока в прямом воздуховоде с учетом концентрации смеси, определяется по формуле Дарси-Вейсбаха, Па

, (6)

где l – длина прямолинейного участка трубопровода, м;

 — коэффициент гидравлического сопротивления (трения);

d – внутренний диаметр трубы, м;

р дин – динамическое давление, исчисляемое по средней скорости воздуха и его плотности, Па;

К – комплексный коэффициент; для трасс с частыми поворотами К = 1,4; для трасс прямолинейных с небольшим количеством поворотов , где d – диаметр трубопровода, м;

К тм – коэффициент, учитывающий вид транспортируемого материала, значения которого приведены ниже:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *